Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

	Б1.В.11 Квантовая электроника
наименование	дисциплины (модуля) в соответствии с учебным планом
Направление подгото	овки / специальность
	03.03.02 ФИЗИКА
Направленность (про	филь)
03	3.03.02.01 Фундаментальная физика
Форма обучения	очная
Год набора	2020

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
канд.	техн. наук, доцент, Лямкина Н.Э.
	полжность инипиалы фамилиа

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Дисциплина «Квантовая электроника» представляет собой одну из важных дисциплин подготовки бакалавров. Квантовая электроника — это область науки и техники, изучающая методы усиления и генерации электромагнитного излучения, основанные на использовании вынужденного излучения а также свойства квантовых усилителей и генераторов и их применения.

Изучение дисциплины базируется на материалах предшествующих естественно-научных дисциплин. В ней излагаются физические принципы усиления и генерации света на основе индуцированного испускания излучения, описываются открытые резонаторы лазерных систем, принципы работы разнообразных типов лазеров и рассматриваются ха-рактеристики их пучков.

Целью преподавания дисциплины является формирование у студентов знаний о фундаментальных физических явлениях и законах, лежащих в основе работы лазеров и систем управления характеристиками их излучения

1.2 Задачи изучения дисциплины

Выпускник, освоивший дисциплину «Квантовая электроника» должен приобрести профессиональные компетенции, а также получить умения и навыки, необходимые для его профессиональной деятельности в качестве бакалавра по направлению «Физика».

знать: физические основы генерации лазерного излучения; зависимости между различными параметрами; основные пара-метры и характеристики активных сред лазеров (уровни энергии рабочих переходов, вероятности переходов, причины уширения спектральных линий); устройство и принцип действия различных типов лазеров, их основные характеристики, существующие режимы их работы; свойства лазерных пучков; области применения лазеров;

уметь: описывать развитие основных процессов, происходящих в генераторах когерентного оптического излучения, применять математический аппарат для описания этих процессов; применять различные методы расчета и оптимизации основных энергетических и эксплуатационных параметров оптических квантовых генераторов; пользоваться общирным справочным материалом по лазерам и лазерным установкам для нахождения параметров и физико-технических характеристик различных типов лазеров.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции Запланированные результаты обучения по дисциплине	ПК-4: способностью применять на практике профессиональные знания и								
		Запланированные результаты обучения по дисциплине							

ПК-4: способностью применять на практике профессиональные знания и умения, полученные при освоении профильных физических дисциплин

ПК-4: способностью применять на практике профессиональные знания и умения, полученные при освоении профильных физических дисциплин

физические основы генерации ла-зерного излучения основные параметры и характери-стики активных сред лазеров (уровни энергии рабочих переходов, вероят-ности переходов, причины уширения спектральных линий) устройство и принцип действия раз-личных типов лазеров, их основные характеристики, существующие ре-жимы их работы описывать развитие основных про-цессов, происходящих в генераторах когерентного оптического излучения, применять математический аппарат для описания этих процессов применять различные методы расчета и оптимизации основных энерге-тических и эксплуатационных параметров оптических квантовых гене-раторов пользоваться обширным справочным материалом по лазерам и лазерным установкам для нахождения параметров и физико-технических ха-рактеристик различных типов лазе-ров. навыками анализа параметров ин-версной среды для трех- и четырех-уровневой системы методами расчета коэффициента усиления активных сред навыками анализа режима генерации гигантских импульсов и режима синхронизации продольных мод в твердотельных лазерах.

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

Вид учебной работы	Всего, зачетных единиц (акад.час)	e 1
Контактная работа с преподавателем:	2 (72)	
занятия лекционного типа	1 (36)	
практические занятия	1 (36)	
Самостоятельная работа обучающихся:	1 (36)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

				Кол	нтактная р	абота, ак	. час.		
			ятия	Заня	тия семин	Самостоятельная работа, ак. час.			
№ π/π	Молупи темы (разлены) писшиннины	лекционного типа		Семинары и/или Практические занятия				Лабораторные работы и/или Практикумы	
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1. Pa	здел 1. Активные среды лазеров	1	1	1			1	·	•
	1.							6	
	2. Структура и содержание дисциплины. Лазер как источник когерентного оптического излучения. Отличие свойств лазерных пучков от свойств излучения обычных источников оптического диапазона.	2							
	3. Понятие активной среды лазеров. Насе-ленности возбужденных состояний среды и оптические переходы. Изменение населенности квантовых состояний среды под действием возмущений; балансные кинетические уравнения.	2							
	4. Трех- и четырехуровневые схемы полу-чения инверсной заселенности. Способы возбуждения (накачки) активных сред лазеров для получения инверсной засе-ленности.	2							

	7	1	1	1	1	1		
5. Активные среды лазеров и способы создания в них инверсной заселенности квантовых состояний. Трех- и четырехуровневые схемы получения инверсной заселенности			6					
2. Раздел 2.								
1.							6	
2 Оптический квантовый усилитель (ОКУ). Условия получения эффекта усиления оптического излучения в средах. Показатель и коэффициент усиления. Полоса пропускания ОКУ, работающего в линейном режиме. Шумы ОКУ.	2							
3. Нелинейный режим работы ОКУ, эффект насыщения среды. Максимальная выходная мощность ОКУ, работающего в непрерыв-ном режиме. Максимальная выходная энергия ОКУ, работающего в импульсном режиме	2							
4. Оптический квантовый генератор (ОКГ). Превращение ОКУ в ОКГ. Условия самовозбуждения генератора. Частота генерации ОКГ (лазера). Максимальная выходная мощность лазера, работающего в непрерывном режиме. Оценка предельных возможностей мощных лазеров.	2							
5. Оптический квантовый усилитель.			4					
6. Оптический квантовый генератор			2					
3. Раздел 3. Оп-тические ре-зонаторы		<u> </u>	•	•	•			
1.							4	

2. Свойства оптических резонаторов (OP). Общие сведения о резонаторах. Потери энергии излучения в OP. Число Френеля. Добротность OP и ее зависимость от величины потерь, полосы пропускания OP и времени затухания энергии излучения в OP.	2				
3. Типы ОР. Устойчивые и неустойчивые ОР.	2				
4. Свойства оптических резонаторов.		4			
5. Моды оптических резонаторов		2			
4. Раздел 4. Режимы работы лазеров					
1.				4	
2. Режим свободной генерации. Режим модуляции добротности резонатора и генерация гигантских импульсов. Режим синхронизации продольных мод и генерация ультракоротких лазерных импульсов.	2				
3. Синхронизация поперечных мод. Режим разгрузки резонатора. Режим генерации последовательности импульсов в лазерах с непрерывной накачкой. Использование отрицательной обратной связи для получения импульсов микросекундной длительности.	2				
4. Режимы работы лазеров.		 6			
5. Раздел 5. Ти-пы лазеров	-				
1.				10	

2. Твердотельные лазеры Особенности твердотельных активных сред лазеров. Уровни энергии иона хрома в корунде; рубиновый лазер. Уровни энергии иона неодима; неодимовый лазер. Лазерное стекло. Особенности полупроводниковых лазеров. Вынужденное излучение в полу-проводниках, создание инверсной за-селенности. Лазеры на гомоструктурах. Лазеры на гетероструктурах	4				
3. Газовые лазеры Лазеры на нейтральных атомах (пример гелийнеонового лазера). Ионные лазеры (пример аргонового лазера). Лазеры на самоограниченных переходах (пример лазера на парах меди). Эксимерные лазеры. Химические лазеры (пример HF-лазера).	2				
4. СО2-лазеры Схема энергетических уровней молекулы СО2, участвующих в процессе лазерной генерации. Создание инверсии заселенности на лазерных переходах. Формирование частотного спектра лазерного излучения. Зависимость мощности генерации СО2-лазера от температуры активной среды. Импульсные СО2-лазеры. Газодинамические и химические СО2-лазеры	2				

		1	1	1		1	1	
1	5. Лазеры на растворах органических красителей (ЛРОК) Спектрально-люминесцентные свойства органических красителей; схема уровней. Возбуждение молекулы красителя и пути ее дезактивации. Условие генерации лазерного излучения в ЛРОК. Перестройка частоты лазерного излучения с помощью дисперсионных резонаторов. Продольный и поперечный способы накачки ЛРОК. Импульсный и непрерывный режимы работы ЛРОК.	2						
	6. Твердотельные лазеры			2				
	7. Газовые лазеры CO2-лазеры			2				
	8. Лазеры на растворах органических красителей (ЛРОК)			2				
6. Pa	вдел 6. Свойства лазерных пучков							
	1.						6	
	2. Энергетические характеристики лазерного излучения Временная подгруппа энергетических характеристик для описания свойств излучения лазеров непрерывного и им-пульсного действия. Пространственная подгруппа энергетических характеристик. Измерение энергии и мощности излучения. Измерение угла расходимости пучка и радиального распределения его ин-тенсивности. Фокусировка лазерных пучков. Понятия яркостного размера пятна фокусировки, его сосредоточенности и контрастности	2						

3. Спектральные, корреляционные и дополнительные характеристики лазерного излучения Спектр лазерного излучения и понятие его монохроматичности. Корреляционные характеристики (когерентность и поляризация). Временная и пространственная когерентности лазерных пучков. Степень когерентности и ее измерение. Степень поляризации и ее измерение.	2				
4. Дополнительные характеристики: спек-тральная плотность энергетической освещенности, энергетическая яркость и спектральная плотность энергетической яркости. Сравнение свойств лазерного излучения со свойствами естественного света. Способы сравнения характеристик пучков различных лазеров	2				
5. Энергетические характеристики лазерного излучения.		2			
6. Спектральные, корреляционные и дополнительные характеристики лазерного излучения.		4			
Всего	36	36		36	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Киселев Г. Л. Квантовая и оптическая электроника: учеб. пособие для студентов вузов(Санкт-Петербург: Лань).
- 2. Айхлер Ю., Айхлер Г. И., Казанцева Л. Н. Лазеры. Исполнение, управление, применение(Москва: Техносфера).
- 3. Тарасов Л. В. Физика лазера(Москва: URSS).
- 4. Карлов Н. В. Лекции по квантовой электронике: монография(Москва: Наука, Гл. ред. физ.-мат. лит.).
- 5. Звелто О. Принципы лазеров: перевод с английского(Санкт-Петербург: Лань).
- 6. Тарасов Л. В. Физика процессов в генераторах когерентного оптического излучения: лазеры, резонаторы, динамика процессов (Москва: Радио и связь).
- 7. Крылов К. И., Прокопенко В. Т., Тарлыков В. А. Основы лазерной техники: учеб. пособие для приборостроительных спец. вузов (Ленинград: Машиностроение, Ленингр. отд-ние).
- 8. Тимофеев В. П. Взаимодействие оптического излучения с инверсными средствами: учебное пособие(Красноярск: ИПЦ КГТУ).
- 9. Тимофеев В. П. Характеристики лазерного излучения и их измерение: учебное пособие(Красноярск: ИПЦ КГТУ).

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

- 1. Операционная система MS Windows
- 2. Офисный пакет MS Office

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

- 1. http://elibrary.ru
- 2. http://www.znanium.com

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Институт располагает учебными аудиториями для проведения занятий лекционного типа и практических занятий. Аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации (демонстрационное оборудование).